IDENTIFYING THE BENEFITS OF A CLEAN CORRIDOR

Prepared by:
Industrial Economics, Inc. (IEc)
Cadmus Group
Overview of Economic Analysis

Why measure benefits?
- Help decisionmakers understand “corridor-level impacts”
 - Uses simple, publicly available tools
 - I-80 as example – proxy for national corridor

What impacts did we quantify?
- Station Construction/infrastructure development (jobs and dollars)
- Station Operations (jobs and dollars)
- Avoided damages related to emissions (monetized social benefits)
 - Criteria air pollutants/health impacts
 - GHG/climate impacts

What did we miss?
- More benefits(!), such as local/specific impacts on communities, changes in expenditure patterns by EV owners…. Others?
Methodology

1. Calculate total economic impacts related to station construction and operations
2. Calculate total avoided emissions damages
3. Consider additional non-quantified benefits

Baseline: 2018 Current I-80 Corridor

Scenario 1: 2019 EV and CNG Clean Corridor

Scenario 2: 2030 EV and CNG Clean Corridor

Estimate total number of alternative fuel stations

Estimate total VMT supported by stations

Calculate total emissions reductions

Baseline: 2018 Current I-80 Corridor

Scenario 1: 2019 EV and CNG Clean Corridor

Scenario 2: 2030 EV and CNG Clean Corridor

We are here
Baseline: I-80 Today

I-80 TODAY

Total Miles: 2,900
- 590 miles EV-Ready
- 820 miles CNG-Ready
- 11% ready for both
- 2,600 miles to be improved

What would completing this corridor do for:
Jobs? Air quality?
Today? In the future?

EXISTING ALTERNATIVE FUEL LOCATIONS
- EV (light-duty): 90 DCFC
- CNG (freight): 46 CNG
Clean Corridor Impacts: 2019 I-80 Scenario

I-80 CLEAN CORRIDOR 2019

Total Miles: 2,900
- 100% EV-Ready
- 100% CNG-Ready
- 62 new stations
 - Construction jobs
 - Operations
- Clean VMT supported:
 - 83M eVMT
 - 64M CNG-VMT

Existing Alt. Fuel Infrastructure
- EV and CNG-Ready Corridor
- EV-Ready Corridor
- CNG-Ready Corridor
- No Current Alternative Fuel Corridor

ALTERNATIVE FUEL LOCATIONS
- EV (light-duty): 136 DCFC
- CNG (freight): 62 CNG
Clean Corridor Impacts: 2030 I-80 Scenario

I-80 CLEAN CORRIDOR 2030

- Total Miles: 2,900
 - 100% EV-Ready
 - 100% CNG-Ready
 - 3 new EV stations annually
 - Construction jobs
 - Operations
 - Clean VMT supported:
 - 1.2B eVMT
 - 170M CNG VMT

Existing Alt. Fuel Infrastructure
- EV and CNG-Ready Corridor
- EV-Ready Corridor
- CNG-Ready Corridor
- No Current Alternative Fuel Corridor

ALTERNATIVE FUEL LOCATIONS
- EV (light-duty): 173 DCFC
- CNG (freight): 62 CNG
Results: Employment Impacts

NEW STATION CONSTRUCTION AND OPERATION

Construction:
- Initial build (2019)
 - 68 jobs for EV
 - 290 jobs in CNG
- EV keeps expanding

Operation (ongoing):
- 20 jobs in EV – increasing
- 170 jobs in CNG

Value: $110M output in 2030
Results: Emissions Reductions

IMPACT OF THE VMT POWERED BY THE I-80 CORRIDOR

Value of avoided “wells to wheels” emissions:

• Criteria pollutants emissions avoided: value grows to $10 million/year for VMT powered by I-80 corridor fueling locations

• GHG emissions avoided: value grows to over $13 million/year

• EVs account for out-year benefits growth, CNGs for near-term
I-80 Corridor Scenarios: Summary

IN 2030, I-80 CORRIDOR WOULD SUPPORT:

1.2B eVMT
170M CNG VMT
753 ongoing jobs
 - 5 Construction jobs
 - 748 Operations jobs
Emissions benefits near $24 million

Very rough estimates!
Additional Economic Impacts

A CNG- and EV-ready corridor could contribute to/benefit from:

1. Increased revenue near charging stations by “drawing customers”
 - “1$/minute” spent while charging (may decrease with charging time)

2. Changes in revenues related to reduced operating costs to EV owners
 - Electric miles cost less than gasoline miles – can change “on the road” cash flow

3. Changes in local economies due to less “exported” money for gasoline
 - Fuel (esp. electricity) produced “locally” – money spent on fuel stays in local economy
 - Growth in maintenance, equipment to serve, produce alternative fuel vehicles

4. Potential (non-linear) increases in regional alternative fuel use (e.g., freight hubs)
 - Potentially localized impacts on air quality, noise, economic development

5. Contribute to reduced costs to electric utilities (and ratepayers)
QUESTIONS?

Your Input Is Welcome as We Refine / Finalize the Analysis

Jacob Lehr, Senior Research Analyst
Industrial Economics, Inc.
jlehr@indecon.com
<table>
<thead>
<tr>
<th>DATA / ASSUMPTION</th>
<th>VALUES</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Alternative Fuel Corridor Designations</td>
<td>590 miles EV-ready; 820 miles CNG-ready</td>
<td>FHWA (as of April 23, 2019)</td>
</tr>
<tr>
<td>Current alternative fuel infrastructure</td>
<td>90 DCFC; 46 CNG Stations within 5 miles</td>
<td>DOE Alternative Fuels Data Center Station Locator.</td>
</tr>
<tr>
<td>Economic impacts of CNG stations</td>
<td>18 short-term jobs per CNG station construction; 11 jobs per CNG station operation.</td>
<td>Argonne National Lab (ANL) NG JOBS Model, supply-chain impacts for CNG stations.</td>
</tr>
<tr>
<td>Economic impacts of EV stations</td>
<td>1.5 short-term jobs per EV station construction; 0.43 jobs per EV station operation.</td>
<td>Extrapolated from NG JOBS Model and EV station costs from AFLEET.</td>
</tr>
<tr>
<td>Well-to-wheels emissions reductions</td>
<td>See next slide for values.</td>
<td>AFLEET 2018.</td>
</tr>
<tr>
<td>Marginal damage estimates</td>
<td>See next slide for values.</td>
<td>EPA, Michalak, and Muller.</td>
</tr>
<tr>
<td>VMT increases linearly</td>
<td>BEV VMT increases 909% from 2019 to 2030; CNG VMT increases 136% from 2019 to 2030.</td>
<td>EIA Annual Energy Outlook 2019</td>
</tr>
<tr>
<td>Station utilization</td>
<td>EVs: 4 hr/day in 2019; 8 hr/day in 2030. CNG: 6 hr/day in 2019; 12 hr/day in 2030.</td>
<td>Assumption for EV; Default value for CNG from NG JOBS in 2019. Assume doubling in utilization.</td>
</tr>
<tr>
<td>Station capacity</td>
<td>EVs: 60 kWh DCFC in 2019; 200 kWh DCFC in 2030. CNG: 331 GGE/hr.</td>
<td>EVs: Newest Chargepoint model is 62.5 kWh.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNG: Fast-fill default from NG JOBS.</td>
</tr>
<tr>
<td>Fuel economy</td>
<td>EVs: 4 VMT/kWh. CNG: 5.51 VMT/GGE.</td>
<td>EV: ANL, 2017. CNG: AFLEET.</td>
</tr>
</tbody>
</table>
Key Data Sources and Assumptions (cont.)

EMISSIONS REDUCTIONS (TONS/MILE)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Passenger Car (EV)</th>
<th>Long-Haul Truck (CNG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1.9E-06</td>
<td>-1.6E-05</td>
</tr>
<tr>
<td>NOx</td>
<td>1.2E-07</td>
<td>2.1E-06</td>
</tr>
<tr>
<td>PM10</td>
<td>-7.3E-09</td>
<td>2.2E-08</td>
</tr>
<tr>
<td>PM2.5</td>
<td>3.0E-09</td>
<td>2.0E-08</td>
</tr>
<tr>
<td>VOC</td>
<td>2.7E-07</td>
<td>-8.5E-08</td>
</tr>
<tr>
<td>GHGs</td>
<td>2.0E-04</td>
<td>2.2E-04</td>
</tr>
</tbody>
</table>

MARGINAL DAMAGE VALUES

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>2018$ per ton</th>
<th>Source</th>
<th>Externalities included in Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>$923</td>
<td>Michalek (2011)</td>
<td>Authors account for damages associated with environmental impact, mortality, and morbidity (using a $6 million value of statistical life); and assess location-specific damages in the regions where emissions take place.</td>
</tr>
<tr>
<td>NOx</td>
<td>$15,338</td>
<td>Muller, N. (2014)</td>
<td>Using concentration response functions, author estimates impact on human health end points such as premature mortality, chronic bronchitis, and hospital admissions. Damages also include impacts on agriculture, forestry, and recreation.</td>
</tr>
<tr>
<td>PM10</td>
<td>$10,144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>$90,457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>$7,553</td>
<td>EPA (2016)</td>
<td>Net agricultural productivity, human health, property damages from increased flood risk, and changes in energy system costs, such as reduced costs for heating and increased costs for air conditioning.</td>
</tr>
<tr>
<td>GHGs</td>
<td>$48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>